

PGP DATA SCIENCE DETAILED SYLLABUS

Orientation and Preparatory

Module: Orientation and Preparatory

Welcome to the Course

- What's in course
- Overview of course
- TimeLine of course

Platform Overview

- Who To Use LMS
- Submission, project in LMS

Phase 1

Module: Excel

Introduction of Excel

- About Excel & Microsoft
- Uses of Excel
- Excel software
- Spreadsheet window pane
- Title Bar
- Menu Bar
- Standard Toolbar
- Formatting Toolbar
- The Ribbon
- File Tab and Backstage View
- Formula Bar
- Workbook Window
- Status Bar
- Task Pane
- Workbook & Sheets

Columns & Rows

- Selecting Columns & Rows
- Changing Column Width & Row Height
- Autofitting Columns & Rows
- Hiding/Unhiding Columns & Rows
- Inserting & Deleting Columns & Rows
- Cell
- Address of a cell
- Value
- Formula
- Use of paste and paste special

Functionality Using Ranges

- Using Ranges
- Selecting Ranges
- Entering Information Into a Range
- Using Autofill

Creating Formulas

- Using Formulas
- Formula Functions Sum
- Average
- If
- Count
- Max
- Min
- Proper
- Upper
- Lower
- Using Autosum

Spreadsheet Tools

- Moving between Spreadsheets
- Selecting Multiple Spreadsheets,
- Inserting and Deleting Spreadsheets
- Renaming Spreadsheets
- Copying and Pasting Data between Spreadsheets
- Hiding
- Protecting worksheets

Formatting

- Working with Font Formatting Commands
- Changing the Background Color of a Cell
- Adding Borders to Cells
- Excel Cell Borders Continued
- Formatting Percentages
- Using Excel's Format Painter
- Autofitting Columns & Rows
- Creating Styles to Format Data
- Merging and Centering Cells
- Using Conditional Formatting
- Editing Excel Conditional Formatting

Nested Functions, Advanced Logical Functions (If, AND, OR)

- Nested If
- Average
- Max
- Min
- Logical Functions

Module: Advance Excel

Advance Formulas

- Concatenate
- Vlookup
- Hlookup
- Match
- Countif
- Text
- Trim

Spreadsheet Charts

- Creating Charts
- Different types of chart
- Formatting Chart Objects
- Changing the Chart Type
- Showing and Hiding the Legend
- Showing and Hiding the Data Table

Data Analysis

- Sorting
- Filter
- Text to Column
- Data validation

Pivot Tables

- Creating Pivot Tables
- Manipulating a PivotTable
- Using the PivotTable Toolbar
- Changing Data Field
- Properties
- Displaying a PivotChart
- Setting PivotTable Options
- Adding Subtotals to PivotTables
- Filtering PivotTable Data
- Filtering with the Slicer Tool

Power Pivot

- Excel Power Pivot
- Activating the Excel PowerPivot AddIn
- Creating Data Models with PowerPivot
- Excel Power Pivot Data Model Relationships
- Creating PivotTables based on Data Models Excel Power Pivot KPIs

VBA

- VBA Concepts
- VBA Object Oriented Programming Concepts
- Visual Basic Editor (VBE)
- Excel VBA Immediate Window
- Excel VBA Procedure
- Adding Code to a VBA Procedure
- Excel VBA Comments
- Understanding and Working with Excel VBA Variables
- Building Logic with an Excel VBA IF Statement
- Including an Else Statement in the VBA IF Statement
- Working with an Excel VBA For Next Loop

Module: Storytelling & Dashboard Creation

Dashboard Creation

Dashboard Creation

PROJECTS

Exams

Phase 2

Module: SQL

Introduction

- Getting Started with SQL and MySQL
- · What is database?
- · Why Use SQL?
- Importance of MySQL

SQL Server Languages & Relational Databases

- SQL Language Statements (DDL, DCL, DML, TCL)
- Relational Database Terminology
- Relational Database essentials
- Primary key
- Foreign Key
- Unique Key & Null Values

Basics Of SQL

- First Steps in SQL
- Creating a Database
- Introduction to datatypes
- Creating a Table

Constraints of MYSQL

- Different constraints in MySQL
- Primary Key Constraint
- Foreign key Constraint
- Unique constraint
- Default constraint
- Not Null

The Select Statement

- Load the database
- Loading any database
- Starting with SELECT statement
- Group By and Having Clause

The SQI Statement

- Insert statement:(Inserting data INTO table)
- Update statement: (Commit and rollback)
- Delete statement: (Drop vs Truncate)

Aggregate Functions

- Functions
- · Count()
- Sum()
- Min() and Max()
- Avg()
- Round()

Module: Advanced SQL

SQL JOINS

- Introduction to Joins
- Joins Lecture
- Left join Lecture
- Right join Lecture
- Cross join Lecture
- Union and Union all

SUBQUERIES

- Working with Subqueries
- IN nested inside Where
- EXISTS nested inside Where

Stored procedures and functions

Window Functions

CTE

PROJECTS

Exams

Module: Maths

Linear Algebra

- Introduction to vectors and scalars
- Vector addition, subtraction, and scalar multiplication
- Vector norms and inner products
- Introduction to matrices
- Matrix addition, subtraction, and scalar multiplication
- Matrix multiplication and properties
- Transpose, inverse, and determinant of a matrix
- Eigenvalues and Eigenvectors
- Understanding eigenvalues and eigenvectors
- Eigenvalue decomposition (EVD)
- Singular Value decomposition (SVD) a:Eand its applications
- Principal Component Analysis (PCA) and dimensionality reduction

Probability

- Introduction to Probability
- Basic concepts of probability theory, repeated random trials
- Sample space, events, and outcomes
- Discriminative learning, and independence
- Probability Distributions
- Discrete probability distributions (Bernoulli, binomial, Poisson)
- Continuous probability distributions (uniform, normal, exponential)

- Probability density function (PDF) and probability mass function (PMF)
- Conditional Probability and Bayes' Theorem
- Conditional probability definition and calculation
- Bayes' theorem and its application in data science
- Naive Bayes classifier
- Random Variables and Expected Values
- Definition of random variables
- Expected value and variance of a random variable
- · Law of large numbers and the central limit theorem
- Hypothesis Testing and Confidence Intervals
- Null and alternative hypotheses
- Type I and Type II errors
- Confidence intervals and significance levels

Calculus

- Basic of Limits and Continuit
- Differentiation
- Definition of Derivative
- Rules of Differentiation (Product Rule, Quotient Rule, Chain Rule)
- Higher Order Derivatives
- Implicit Differentiation
- Applications of Differentiation (Optimization, Rates of Change)
- Finding Maximums and Minimums-Use derivatives to find the maximum and minimum values of Multivariable Calculus
- Partial Derivatives
- Gradient and Directional Derivatives
- Derivatives
- Derivative of common functions
- Product and Chain Rule-Use the product and chain rules to calculate the derivatives of more complicated function
- Optimization with derivatives
- Intro to optimization: Temperature example
- Optimizing cost functions in ML: Squared loss
- Optimizing cost functions in ML: Log loss
- Functions of two or more variables: Gradients and gradient descent
- Optimization in Neural Networks and Newton's method

Calculus

- Stats types, Descriptive and Infential stats
- Describing distributions
- · Measures of central tendency: mean, median, mode
- Expected values
- Quantiles and box-plots
- Measures of dispersion: variance, standard deviation
- Bigsed vs Unbigsed estimates
- Maximum likelihood estimation
- ML motivation example: Linear Discriminant Analysis
- Likelihood
- Intuition behind maximum likelihood estimation
- MLE: How to get the maximum using calculus
- Bayesian statistics
- ML motivation example: Naive Bayes
- Frequentist vs. Bayesian statistics
- A priori/ a posteriori distributions
- Bayesian estimators: posterior mean, posterior median, MAP
- Interval statistics
- Confidence Intervals
- Margin of error
- Interval estimation
- Confidence Interval for mean of population
- CI for parameters in linear regression
- Prediction Invterval
- Hypothesis Testing
- ML Motivation: AB Testing
- Two types of errors
- Test for proportion and means
- Two sample inference for difference between groups
- ANOVA

Exams

Module: POWER BI

Introduction of power BI

- What is BI?
- What is Data Visualization?
- Data Visualization Preview, Data Visualization Benefits?
- What is Power BI?
- System requirements, What is Visualizations?
- Reports, Dashboards

Product Info And Installation

- Power BI Product suite
- Power BI Components
- Power BI Desktop
- Power BI Pro
- Power BI Premium
- Power BI Desktop Installation
- Desktop UI

Connecting data

- Types of Data Connectors
- The Power Query Editor
- Basic Table Transformations
- Storage & Connection Modes
- Connecting to a Database
- Extracting Data from the Web
- Data, Refresh data, Data Source Settings

Data Shaping

- Text Tools, Numerical Tools, Date & Time Tools
- Change Type with Locale
- Index & Conditional Columns
- Calculated Column Best Practices Grouping & Aggregating
- Pivoting & Unpivoting
- Merging, Queries, Appending Queries

Creating Data Model

- Data Modeling
- Database Normalization
- Primary & Foreign Keys
- Relationships vs. Merged Tables
- Creating Table Relationships
- Managing & Editing Relationships
- Star & Snowflake Schemas
- Active & Inactive Relationships
- Relationship Cardinality
- Connecting Multiple Fact Tables
- Filter Context & Filter Flow
- Bi-Directional Filters & Ambiguity
- Hiding Fields from Report View
- Model Layouts
- Data Formats & Categories
- Creating Hierarchies

Calculation with DAX

- Data Analysis Expressions 101
- DAX vs. M Languages
- Intro to DAX Calculated Columns
- Intro to DAX Measures
- Implicit vs Explicit Measures, Quick Measures
- Calculated Columns vs. Measures,
- Dedicated Measure Tables
- Understanding Filter Context
- DAX Syntax & Operators
- Common DAX Function Categories
- Basic Math & Stats Functions,
- Counting Functions
- Conditional & Logical Functions
- The SWITCH Function
- Common Text Functions
- Basic Date & Time Functions
- Joining Data with RELATE
- The CALCULATE Function

- DAX Measure Totals
- The ALL Function
- The FILTER Function
- Time Intelligence Patterns
- Iterator (X) Functions

Visualizing Data & Report

- Dashboard Design Framework
- Adding Report Pages & Objects
- Naming & Grouping Objects
- Cards & Multi-Row Cards
- Building & Formatting Charts
- Line Charts, Trend Lines & Forecasts
- KPI Cards,Bar & Donut Charts
- Basic Filtering Options
- Table & Matrix Visuals
- Conditional formatting
- Top N Filtering, Top N Text Cards
- Map Visuals, Report Slicers
- Gauge Charts, Area Charts
- Drill Up & Drill Down
- Drillthrough Filters, Editing Report Interactions
- Adding Bookmarks
- Custom Navigation Buttons
- Slicer Panels, Numeric Range Parameters
- Fields Parameters
- Importing Custom Visuals
- Managing & Viewing Roles
- Mobile Layouts
- Publishing to Power BI Service
- Visualizing Data with Reports

PROJECTS

Exams

Phase 3

Module: Python Programming

Python Basic Building

- Python Keywords and identifiers
- Comments, indentation and statements
- Variables and data types in Python
- Standard Input and Output
- Operators
- Control flow: if else elif
- Control flow: while loop
- Control flow: for loop
- · Control flow: break and continue

Python Data Structures

- Strings
- Lists, List Comprehension
- Tuples
- Sets
- Dictionary, Dictionary Comprehension

Python Functions

- Python Built-in Functions
- Python User-defined Functions
- Python Recursion Functions
- Python Lambda Functions

Python Exception Handling, Logging And Debugging

- Exception Handling Using Try Catch Block
- Custom Exception Handling
- Logging With Python
- Debugging With Python

Python OOPs

- Python Objects And Classes
- Python Inheritance
- Abstraction In Python
- Polymorphism in Python
- Encapsulation in Python

Flask

- Flask Fundamentals
- Building Rest API's

Python Project With Deployment

- End To End Review Scraper Project With Deployment In Cloud
- Weather App- Build A Web app that displays current weather conditions for a specific location using OpenWea
- Image web scraper Build A Image Web Scraper which extracts images of Google

Module: Python Data Wrangling

Numpy

Understand the NumPy arrays, operations, methods

Pandas

DataFrame, series, operations, methods

Matplotlib

Plot types of chart, design and customize chart

Statistics and Visualization with NumPy and Pandas

- Descriptive Statistics
- Introduction to Matplotlib Through a Scatter Plot
- Definition of Statistical Measures
- Random Variables
- Probability Distribution
- Discrete Distributions
- Continuous Distributions

Using NumPy & Pandas to Calculate Basic Descriptive Statistics on the DataFrame

 Use dataframe for advanced data generation, analysis, and visualization.

Module: Deep Dive In Wrangling

Flask

- Subsetting the DataFrame
- The unique Function
- Conditional Selection and Boolean Filtering
- Setting and Resetting the Index
- The GroupBy Method

Detecting Outliers and Handling Missing Values

- Outlier detection
- Missing Values in Pandas
- Filling and dropping missing Values in Pandas
- Outlier Detection Using a Simple Statistical Test

Concatenating, Merging, and Joining

- JOIN queries involving multiple DataFrame objects.
- Useful Methods of Pandas

Work with Differnet datasource

- Go through various data sources and how they can be imported into pandas DataFrames, thus imbuing wrangling professionals with extremely valuable data ingestion knowledge.
- Beautiful Soup 4 and Web Page Parsing for data collect

Use function for advance wrangling

- Advanced List Comprehension and the zip Function, data formatting dataset, identify and cleaning outliers
- Reading Data from XML
- Reading Data from an API
- Fundamentals of Regular Expressions (RegEx)

Use function for advance wrangling

- Define, insert, manipulate, and retrieve data from the databases
- Using an RDBMS (MySQL/PostgreSQL/SQLite)
- Connect to a database from Python

Module: Data Visualization In Python

Basic Vizualization using Pandas

- Data Generation
- Line Plot, More on Line Plot, Bar Plot
- Stacked Plot, Histogram, Box Plot
- Area and Scatter Plot, Hex and Pie Plot,
- Scatter Matrix and Subplots

Basic Vizualization using Pandas

- · Line Plot, Label, Scatter, Bar, and Hist Plots
- Box Plot, Subplot, xlim, ylim, xticks, and yticks
- Pie Plot, Pieplot text color
- Nested Pie Plot, Labeling a Pie Plot
- Bar Chart on Polar Axis, Line Plot on a Polar Axis
- Scatter Plot on a Polar Axis
- Integral in Calculus Plot as Area Under the Curve
- Animation Plot
- Time Series plot
- Dataset Loading
- Line and Scatter Plots
- Subplots
- Heatmap
- Histogram and KDE Plots

Seaborn

- Introduction
- · Scatter Plot, Hue, Style & Size
- Pie Plot, Pieplot text color
- Line Plot ,Subplot, sns.lineplot(),
- sns.scatterplot()
- Cat Plot,Box Plot, Boxen Plot
- Violin Plot,
- Pair Plot,
- Regression Plot,
- Pair Plot, Regression Plot,
- Point Plot, Joint Plot
- Controlling Plotted Figure Aesthetics

Ploty

- Installation and Setup
- Line Plot, Scatter Plot
- Bar Plot, Box Plot and Area Plot
- 3D plot, Spread Plot and Hist Plot
- Bubble Plot and Heatmap

PROJECT

Assignment

Phase 4

Module: Machine Learning

Overview of Al

- Introduction of AI
- AI Vs ML Vs DL Vs DS
- Data science and machine learning
- Show the usecase of ML

Introduction of ML

- What is Machine Learning?
- Types of Machine Learning
- Differences between supervised learning, unsupervised learning, Reinforcement learning
- ML Applications
- Regression and Classification in all type of ML

Feature Engineering Basic Before Learn Algorithms

- Feature Selection
- Handling missing values
- · Handling imbalanced data
- Handling outliers
- Encoding
- Feature Scaling

Supervised learning

- Defination overview
- · Label data
- Basic Terminology
- Types of SL (Regression and Classification)

Gradient descent

- Gradient Descent algorithm and its variants
- Stochastic Gradient Descent (SGD)
- Mini-Batch Gradient Descent with Python
- Optimization Techniques for Gradient Descent
- Introduction to Momentum-based Gradient Optimizer

Regression in Supervised Learing

- Simple Linear Regression
- What is Linear Regression?
- Implement Simple Linear Regression
- What is the best fit line?
- Cost Function for Linear Regression
- Gradient Descent for Linear Regression
- Evaluation Metrics for Linear Regression
- Coefficient of Determination or R-Squared (R2)
- Root Mean Squared Error
- Assumptions of Linear Regression
- Linear Regression (Python Implementation)
- Univariate Linear Regression in Python
- Multiple Linear Regression using Python
- Locally weighted Linear Regression
- Multiple Linear Regression
- Polynomial Regression

Basic of Some Functions (Use in both regression & classification)

- Loss Functions or Cost function(predict & actual label during training)
- Error function/Evaluation (performance evaluation on validation data or test data or unseen data for generalization of the model performance.)
- Optimizer functions (updata parameter to minimize the loss funtion)
- Overfitting and underfitting

Regression in Supervised Learing

- Reqularization in regression(also for classification)
- Lasso,Ridge, ElasticNet
- Decision tree regression
- Bayesian linear regression
- Support vector regressor
- Ensemble learning in Regression

Time Series In ML

Data Forcasting

Basic Project on Linear Regession

House Price Predictions

Classification in Supervised Learning

- Started with Classification (label data)
- Classification Types (Binary classification, Multi-class Classification), mulit-Label classification, Imbalanced Classification

Classification Algorithms

- Linear Classification
- Logistic regression
- SVM
- Single-layer Perceptron
- SGD Classifier
- Non-Linear Classification
- K-Nearest Neighbours
- Kernel SVM
- Naive Bayes
- Decision Tree Classification
- Ensemble learning classifiers : Random Forests, AdaBoost, Bagging Classifier, Voting Classifier, ExtraTrees Classifier.
- Multi-layer Artificial Neural Networks

Evaluation metrics in classification:

- Classification accuracy
- Confusion matrix, Precision and Recall
- F1-Score
- ROC and AUC curve
- Cross-validation

Start Model creation in classification Logistic Regression (it is classification model in ML) then all

- How does Classification Machine Learning Work?
- Classification process steps:
- Understanding the problem
- Data preparation(collecting and preprocessing the data and splitting it into training, validation, and test sets. In this step, the data is cleaned, preprocessed, and transformed into a format for model train)
- Feature Extraction
- Model Selection
- Model Training
- Model Evaluation
- Fine Tuning the model
- Deploying the model

PROJECTS

- Binary Classification project
- Multi-Class Classification project

Logistic Regression

- Understanding Logistic Regression
- Why Logistic Regression in Classification?
- Logistic Regression using Python
- Cost function in Logistic Regression
- Logistic Regression using Tensorflow
- Naive Bayes Classifiers

Support Vector Machine

- Support Vector Machines (SVMs) in Python
- SVM Hyperparameter Tuning using GridSearchCV
- Using SVM to perform classification on a non-linear dataset

Decision Tree

- Decision Tree
- Decision Tree Regression using sklearn
- Decision tree implementation using Python

Random Forest

- Random Forest Regression in Python
- Ensemble Classifier
- Voting Classifier using Sklearn
- Bagging classifier

PROJECTS

Evaluation and Model Selection

- Bias Variance Trade-Off
- Model evaluation techniques
- · Importance of Splitting the data into training, validation, and testing
- Cross-validation techniques
- ML Evaluation Metrics
- Classification Evaluation Metrics
- Accuracy Score
- Precision, recall, and F1 score
- Confusion Matrix
- ROC curve
- Regression Evaluation Metrics
- Mean Absolute Error
- Mean Squared Error
- Mean Absolute Percentage Error
- -R2 Score
- Hyperparameter tuning
- GridSearchCV
- RandomizedSearchCV

PROJECTS

PROJECTS

Unsupervised Learning

- Overview of UL, Basic of clustering, dimensionality reduction, and density estimation
- Types of UL (clustering, dimensionality reduction, and density estimation)

Clustering

- K-means Clustering
- Hierarchical Clustering
- DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Dimensionality Reduction

- Principal Component Analysis (PCA)
- Singular Value Decomposition (SVD)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Autoencoders

Dimensionality Reduction

- Statistical Methods (e.g., Z-score, Mahalanobis distance)
- Density-Based Methods (e.g., Isolation Forest, Local Outlier Factor)
- Clustering-Based Methods
- Support Vector Machines (SVM)

Associate Rule Learning

Apriori Algorithm

PROJECTS

Reinforcement Learning

- Introduction to Reinforcement Learning
- Density-Based Methods (e.g., Isolation Forest, Local Outlier Factor)
- Q-Learning
- Deep Q-Networks (DQN)

RL Implementation

Code

PROJECTS

Assignment

Module: BIG DATA

Introduction

- Definition of Big Data
- Characteristics of Big Data (Volume, Variety, Velocity, Veracity)
- Importance and Challenges of Big Data

Big Data Technologies Overview

- Apache Spark
- MongoDB
- Hadoop
- Basic of (Apache Hbase, Apache Hive, Apache Kafka, Apache Cassandra, Apache Flink, Apache Storm, Elasticsearch, Scala)

Introduction To Big Data & Hadoop

- Types of Digital Data
- Introduction to Big Data
- Big Data Analytics
- History of Hadoop
- Apache Hadoop
- Analysing Data with Unix tools
- Analysing Data with Hadoop
- Hadoop Streaming
- Hadoop Echo System,
- IBM Big Data Strategy
- Introduction to Infosphere BigInsights and Big Sheets.

HDFS(Hadoop Distributed File System)

- The Design of HDFS
- HDFS Concepts
- Command Line Interface
- Hadoop file system interfaces
- Data Flow
- DataIngest with Flume and Scoop & Hadoop archives
- Serialization
- Avro & File Based Data Structures

Map Reduce

- Anatomy of a Map Reduce Job Run
- Job Scheduling
- Shuffle and Sort
- Task Execution
- Map Reduce Types and Formats
- Map Reduce Features.

Hadoop Eco System

- Pig: Introduction to PIG
- Execution Modes of Pig
- Comparison of Pig with Databases
- Grunt, Pig Latin
- User Defined Functions
- Data Processing operators
- Hive: Hive Shell, Hive Services
- Hive Metastore
- Comparison with Traditional Databases
- HiveQL, Tables
- Querying Data and User Defined Functions
- Hbase: HBasics
- Concepts, Clients, Example
- Hbase Versus RDBMS
- Big SQL: Introduction

Apache Spark

- Introduction to Spark
- Spark Basics
- Working with RDDs in Spark
- Aggregating Data with Pair RDDs
- Writing and Deploying Spark Applications
- Parallel Processing
- Spark RDD Persistence
- Spark MLlib
- Integrating Apache Flume and Apache Kafka
- Spark Streaming
- Improving Spark Performance
- Spark SQL and Data Frames
- Scheduling/Partitioning

MONGO DB

- Introduction to NoSQL and MongoDB
- MongoDB Installation
- Importance of NoSQL
- CRUD Operations
- Data Modeling and Schema Design
- Data Management and Administration

- Data Indexing and Aggregation
- MongoDB Security
- Working with Unstructured Data

Apache Kafka

- What is Kafka An Introduction
- Multi-Broker Kafka Implementation
- Multi Node Cluster Setup
- Integrate Flume with Kafka
- Kafka API
- Producers & Consumers

CLOUDS

- AWS, AZURE, GCP
- Azure Started
- Introduction to Microsoft Azure
- Introduction to ARM & Azure Storage
- Introduction to Azure storage
- Azure Virtual Machines
- Azure App and Container services
- Azure Networking I
- Azure networking II
- Authentication and Authorization in Azure using RBAC
- Microsoft Azure Active Directory
- Azure Monitoring

Case Studies

PROJECT

- Big Data in Machine Learning
- ML Algorithm K-means using Map Reduce for Big Data Analytics
- Parallel K-means using Map Reduce on Big Data Cluster Analysis

PROJECT

- Big Data Analytics
- Decision Trees for Big Data Analytics
- Big Data Predictive Analytics

PROJECT

ASSIGNMENTS

Module: ML OPs

- Evolution of ML Ops
- Key Concepts and Components
- Fundamental of Mlops, Stages of MLOps
- Why DevOps alone is not Suitable for Machine Learning?
- Why need the new field of ML ops

Devops for Data Scientists

- · What is SDLC & Why its Important
- Types of SDLC
- Waterfall Vs Agile Vs DevOps
- DevOps Lifecycle & Tools
- MLOps Lifecycle & Tools, Devops vs MLops
- Basic of Linux, Git & Github, YAML Basic, Docker, Mlflow, CICD

Basic Terms

- Model versioning, Auto-ML
- Low-code MLOps
- Conginerized ML workflow(docker)
- Orchestrate ,MLOps step
- Version Control Systems
- Data Versioning
- Model Explainability, Auditability, and Interpretable machine learning
- Model Packaging and Serialization
- Model Metadata Management
- Model Governance Policies
- Model Experimentation and Tracking
- Monitoring and Logging

Continuous Integration & Continuous Deployment GIT & GITHUB

- Overview of CI/CD Pipelines
- Automated Testing
- Version Control Systems (Git, SVN)
- CI/CD Tools (Jenkins, GitLab CI/CD, CircleCI)

Model Development and Training

- Data Collection and Preprocessing
- Model Selection and Evaluation
- Hyperparameter Tuning
- Model Training Techniques

Packaging the ML models

- Typical Experimentation with Dataset
- Model fit and generate Predictions
- Challenges in Working inside the Jupyter Notebook
- Understanding the Modular Programming
- Creating Folder Hierarchy for ML Project
- Create Config Module
- Data Handling Module
- Data Preprocessing part 1
- Data Preprocessing part 2
- Sklearn pipeline
- Training Pipeline
- Prediction Pipeline
- Perform Training and Predictions
- Requirements txt file
- Testing the New Virtual Environments
- Create Python tests
- Running Pytest
- Create Manifest file
- Create Version File
- Create setup.py
- Packagiing the ML Model & testing
- Summary

Docker

- Docker for Machine Learning
- Introduction to Docker
- Installation of Docker Desktop
- Working with Docker

- Running the Docker Container
- Working with Dockerfile
- Push the Docker Image to DockerHub
- Dockerize the ML Model
- Kubernetes Basics
- Generating a container for an ML API with Docker
- Docker to generate a container of a web application from Flask, Fastapi, HTML

Automating the ML model Cycle

Packaging the training code in Docker Environment & Summary

Model versioning and registration with MLflow

- AutoML Basics
- Solution Design
- Building a model from start to finish with Pycaret
- EDA and Advanced Preprocessing with Pycaret
- Development of advanced models (XGBoost, CatBoost, LightGBM) with Pycaret)
- Production deployment with Pycaret
- Model registry and versioning with MLFlow
- Registering a Scikit-Learn model with MLFlow
- Registering a Pycaret model with Mlflow
- Pycaret and Dagshub integration

Versioning data with DVC

- Hands on laboratory of registering a model and dataset with Pycaret and DagsHub
- Introduction to DVC
- DVC commands and process
- Hands-on lab with DVC

Code repository with DagsHub, DVC, Git & MLFlow

- DVC Pipelines
- Introduction to DagsHub for the code repository
- EDA and data preprocessing
- Training and evaluation of the prototype of the ML model
- DagsHub account creation
- Creating the Python environment and dataset

- Deployment of the model in DagsHub
- Training and versioning the ML model
- Improving the model for a production environment
- Using DVC to version data and models
- Sending code, data and models to DagsHub
- Experimentation and registration of experiments in DagsHub

Model Interpretablity

- Using DagsHub to analyze and compare experiments and models
- Basics of interpretability with SHAP
- Interpreting Scikit Learn models with SHAP
- Interpreting models with SHAP in Pycaret

Model serving Through APIs

- Then putting model into production
- Fundamentals of APIs and FastAPI
- Functions, methods and parameters in FastAPI
- POST Method, Swagger and Pydantic in FastAPI
- API development for Scikit-learn model with FastAPI
- API Security
- Automated API development with Pycaret

Deploy to Cloud (Azure)

- Introduction to Machine Learning in Cloud
- Putting the ML application into production in Azure Container with Docker
- SDKs and Azure Blob Storage for model deployment to Azure
- Model training and production deployment in Azure Blob Storage
- Download the Azure Blob Storage model and get predictions
- Run the Model

MLFlow Tools

- Introduction MLFlow
- Mlflow Tracking component
- Mlflow Loging functions
- Launch multiple Experiments and Runs
- Autologging in Mlflow
- Tracking Server of Mlflow
- Mlflow Model component
- Handling Customized model in Mlflow
- Mlflow Model evaluation

- Mlflow Registry component
- Mlflow Project component
- Mlflow client
- Mlflow CLI commands
- Cloud integration with Mlflow

End To End Project 1

End To End Project 2

PROJECT

ASSIGNMENT

Phase 5

Module: Deep Learning

Basic Learning Of Deep Learning ANN

- Artifical Neural Network Working
- The Neuron
- The Activation Function
- How do Neural Networks learn?
- Back Propogation In ANN
- Gradient Descent, Stochastic Gradient Descent
- Chain Rule Of Derivatives
- Vanishing Gradient Problem
- Exploding Gradint Problem
- Building an ANN
- Neurons, perceptron
- Input layer, Output layer
- Weights, Bias

Multi-Layer perceptron Overview

- Forward propagation
- Backword Propagation
- Activation function
- loss function
- Optimizers

Deep Learning Frameworks

- Working With Tensorflow, Keras
- Working With Pytorch

Forward Propagation

Backward Propagation

Activation Function

- Tanh
- Relu
- Step function
- Sigmoid function
- ELU
- · Leaky Relu and Parametric Relu
- Softmax
- Which activation function used to when

Loss Function or Cost function

- LF for Classification and regression
- ANN- regression- MSE, MAE, Humber loss, RMSE
- Classification -> Cross Entropy--> Binary CE, Catagorical CE,
 Sparse categorical
- IN Neural Network use the combination of all
- SGD

Optimizers

- Gradient Descent
- Mini batch SGD
- SGD with Momentum
- Adagrad and RMSPROP
- Adam Optimizers

Weight initialization Techniques

- Exploring Gradient problem --> Weight initialization
- Uniform Distribution
- Xavier/Glorot initialization
- Kaiming he inutialization

DropOut Layer

CNN

- Overview ,usecase , pro, cons
- Use for images (RGB, GrayScale)
- What You'll Need for CNN
- Convolution Operation
- What are convolutional neural networks?
- Step 1(b) ReLU Layer
- Step 2 Pooling
- Step 3 Flattening
- Summary
- Softmax & Cross-Entropy
- Building an CNN

RNN Recurrent Neural Networks

- What You'll Need for RNN
- The idea behind RNN
- The idea behind Recurrent Neural Networks
- The Vanishing Gradient Problem
- LSTMs
- Practical intuition
- EXTRA: LSTM Variations
- Building a RNN
- Evaluation and Improving RNN

Extra

- Self organizing Maps(SOM)
- Boltzman machine
- AutoEncoders

PROJECT RNN, LSTM

Do Classification and Regression Project

PROJECT CNN

• Do Classification and Regression Project

PROJECT CNN

Module: Deep Learning

Basic of COPUTER VISION

- Overview of CV, basic terms use
- CNN Fundamentals
- Opency library
- Image PIL library

OPENCY

- Image operations
- Image segmentation
- Haar Cascade Classifiers
- Image analysis and transformation
- Motion and object tracking
- Facial Landmark Detection & Face Swaps
- Working with Video
- · Face detection, face recognition, object tracking

Neural Networl for Image Classification

Learn with doing Project

CNN for Image Classification

Learn with doing Project

Transfer Learing and fine tuning

· Learn with doing Project

NN for classification of emotions

Learn with doing Project

Autoencodes

Learn with doing Project

Obejct detection with YOLO

Learn with doing Project

GANs(Generative adversarial networks)

- GANs & Autoencoders Generate Digits
- Anime Characters
- Transform Styles and implement Super Resolution

Image segmentation

· Learn with doing Project

Extra

- OCR, all major Object Detection Frameworks from YOLOv8
- R-CNNs, Detectron2
- SSDs, EfficientDetect
- Image Classification & Transfer Learning
- Googlenet With Research Paper And Practical
- Vggnet With Research Paper And Practical
- Resnet With Research Paper And Practical

DO PROJECT

Making a Computer Vision API and Web App using Flask

DO PROJECT

DO PROJECT

Module: NLP

Basics Overview

- What is NLP, WHY NLP?, Usecase, Industry Use
- Natural Language Processing Problems and perspectives
- Introduction/Recall to/of probability calculus
- N-grams and Language Models
- Markov Models
- Introduction to Machine Learning and Deep Learning
- Recurrent Neural Network Language Models
- The evaluation of NLP applications
- Practical Usecases Of NLP

NLP BAsic

- Tokenization Basic
- Stemming & Lemmatization
- Stop Words

- Vocabulary and Matching Part 1
- Vocabulary and Matching Part 2 (Rule Based)
- Vocabulary and Matching Part 3 (Phrase Based)
- Parts of Speech Tagging
- Named Entity Recognition
- Sentence Segmentation
- Vizualizing pos, visualizing NER

Tools or Libraries

NLTK, Spacy

Python text basic

- Introduction to Python Text Basics
- Working with Text Files with Python
- Working with PDFs
- Regular Expressions

Text Preprocessing

- Tokenization, stop words,regex
- Stemming
- Lemmatization
- Find out how to prepare your text data for most NLP tasks

Language Parsing

 Apply regular expressions (regex) and other natural language parsing tactics to find meaning and insights in the texts

Language Quantification

- One-hot-encoding, Bag of word
- TF,TF-IDF
- Word-Embedding
- Bag-of-word (ngram)
- CBOW and Skipgram
- Word-to-vec
- Avg wor2Vac

Word Embeddings

- Introduction
- Train the model for Embedding

- Embeding with pretrained models
- Attachments of this section code reference
- Introduction to Word Embeddings
- Intuition of Vector Representation
- Hands On Word Embeddings Usage of Pre-trained models
- Skip-gram Word Embeddings Understanding Data Preperation
- Skip Gram Model Architecture
- Skip Gram Hands On Deep Dive
- CBOW Model Architecture & Hands On
- Hyperparameters Negative Sampling and Sub Sampling
- Practical Difference between CBOW and Skip-gram
- Bonus: How does a Network is trained Back-propagation

End to End Pipeline for Text Classification

- General Pipeline for Classification
- Pipeline of nlp
- Approaches to Classification
- Loading the Dataset
- Exploratory Data Analysis & Text Preprocessing
- Remove Low Frequency Words
- Remove Stop Words with Stemming & Lemmatisation
- Application of Model
- TfIDF Approach (Text vectorization)
- Challenges of NLP & N-grams
- Information Extraction (NCR, understanding CRF)

Markov Models

- Markov Models Section Introduction
- The Markov Property
- The Markov Model
- Probability Smoothing and Log-Probabilities
- Building a Text Classifier (Theory)
- Building a Text Classifier (Code)
- Language Model (Theory)
- Language Model (Exercise Prompt)
- Language Model (Code)

LSTM RNN and NLP

- BackPropogration In Recurrent Neural Network And NLP Application
- Word Embedding Layer And LSTM Practical Implementation In NLP Application
- LSTM Practical Implementation In NLP Application
- Advance NLP Series-Bidirectional LSTM Intuition And Implementation Deep Learning

Transformer NLP Architecture

- BERT model
- Hugging Face model
- Attention models

DO PROJECT

- Latent Semantic Analysis What does it do?
- SVD The underlying math behind LSA
- Latent Semantic Analysis in Python
- What is Latent Semantic Analysis Used For?
- Extending LSA

DO PROJECT

Tweet Sentiment Analysis

DO PROJECT

Build ChatBot

ASSIGNMENTS

PROJECT

ASSIGNMENT

Module: GEN AI

Foundation

- Python
- Basic Of Statistics
- Basic Of MAchine Learning
- Deep Learning
- NLP
- ML
- One hot Encoding, Bag Of Words
- TFIDF
- Word2vec,AvgWord2vec
- Tokenization
- Basic Deep Learning Concepts
- ANN Working Of MultiLayered Neural Network
- Forward Propogation, Backward Propogation
- Activation Functions, Loss Functions
- Optimizers

NLP

- Advanced NLP Concepts
- RNN, LSTM RNN, GRU RNN
- Bidirection LSTM Encoder Decoder
- Seq to Seq
- Transformers

NLP

Perform prompt engineering with Python

Understanding GPT (Generative Pre-trained Transformer)

Overview

Generative Al

- Basic of Al
- Types Of Generative Al Models
- Transfer Learning
- Word embeddings
- Diffusion Models
- Image genration
- Generative adversarial networks
- Transformers & Attention Mechanisms

Generative Al Frameworks

- LangChain
- Vector DataBase (ChromaDB, FAISS)
- APIs
- Retrieval Augmented Generation(RAG)
- OpenAl API
- Prompt design
- Sematic Search

Generative AI Tools

- Hugging face
- Chatgpt
- Vertex AI (gemini)
- Clouds (GCP, AWS,AZURE)
- Data science GenAl tools

Use Generative AI In Data Science

- Generative AI in Data Science Lifecycle
- Gen Al For Data Preparation & Data Querying
- · Generative AI for Data Insights
- Generative AI for Data Visualization
- Generative AI for Understanding Data and Model Building

Introduction to Ethics and Responsibilities in GenAl

- Understanding the ethical implications of generative models
- Addressing bias and fairness in generative AI systems
- Ensuring responsible use and deployment of generative models

Product Development Deploy WebApps with Flask

Do a Project

Module: Git & GitHub

Overview Of Git

- What is Git?
- Vizualising Git ?
- History Of Git

IIDST[®]

- Version control System, features, types
- Who use git, Git distributed VCS
- Git vs github: what's the difference?

Installation git & configure shell

- Install in Macos, Windows, Linux
- Install Github Desktop
- Setup the git, Git file life-cycle

Basic Shell Commands

- Echo, pwd, cwd, cd, dir
- · Rename, delete, rm, open, edit

GIT

- Git Setup: Your Name & Email
- Create a New Local Git Repository (Initialize Repository)
- Stage & Commit Files

Working with Branch

- What Really Matters In This Section
- Introducing Branches
- The Master Branch (Or Is It Main?)
- What On Earth Is HEAD?
- Viewing All Branches With Git Branch
- Creating & Switching Branches
- More Practice With Branching
- Another Option: Git Checkout Vs. Git Switch
- Switching Branches With Unstaged Changes?
- Deleting & Renaming Branches

Merging Branches

- Basic of merge
- Vizualizing merges
- Generate merge commit
- Using VSCode to resolve Conflits

Comparing changes with Git Diff

- Git diff command
- Viewing Unstaged Changes

IIDST

- Vewing working Directory changes
- Viewing staged changes
- Diffing Specific Files
- Comparing Changes Across Branches
- Comparing Changes Across Commits
- Visualizing Diffs With GUIs

GitHub Tour

- Basic of github
- Signup
- Account configure or setup
- What Does Github Do For Us?
- · Why You Should Use Github!
- Cloning Github Repos With Git Clone
- Cloning Non-Github Repos
- Github Setup SSH Config
- Creating Our First Github Repo!
- A Crash Course on Git Remotes
- Introducing Git Push
- Touring A Github Repo
- Practice With Git Push
- A Closer Look At Git Push
- What does "git push -u" mean?
- Another Github Workflow Cloning First
- Main & Mastithub Default Branches
- GitHub: Push to a Remote Repository
- GitHub: Pull From a Remote Repository
- GitHub: Clone (Download) a Remote Repository

Fetching & Pulling

- Remote Tracking Branches: What Are They?
- Checking Out Remote Tracking Branches
- Working With Remote Branches
- Git Fetch: The Basics
- Demonstrating Git Fetch
- Git Pull: The Basics
- Git Pull & Merge Conflicts
- A Shorter Syntax For Git Pull?

Git basic files configuration

- What Really Matters In This Section
- Github Repo Visibility: Public Vs. Private
- Adding Github Collaborators
- Github Collaboration Demo
- What are READMEs?
- A Markdown Crash Course
- Adding a README To A Project
- Creating Github Gists
- Introducing Github Pages
- gitignore files
- Licences

Git Collaboration Workflows

- The Pitfalls Of A Centralized Workflow
- Centralized Workflow Demonstration
- The All-Important Feature Branch Workflow
- Merging Feature Branches
- Introducing Pull Requests
- Making Our First Pull Request
- Merging Pull Requests With Conflicts
- Configuring Branch Protection Rules
- Introducing Forking
- Forking Demonstration
- The Fork & Clone Workflow
- Fork & Clone Workflow Demonstration

PRACTICE

PROJECT

Exams